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It is shown that the lattice Boltzmann equation �LBE� corresponds to an explicit Verlet time-marching
scheme for a continuum generalized Boltzmann equation with a memory delay equal to a half time step. This
proves second-order accuracy of LBE with respect to this generalized equation, with no need of resorting to
any implicit time-marching procedure �Crank-Nicholson� and associated nonlinear variable transformations. It
is also shown, and numerically demonstrated, that this equivalence is not only formal, but it also translates into
a complete equivalence of the corresponding computational schemes with respect to the hydrodynamic equa-
tions. Second-order accuracy with respect to the continuum kinetic equation is also numerically demonstrated
for the case of the Taylor-Green vortex. It is pointed out that the equivalence is however broken for the case in
which mass and/or momentum are not conserved, such as for chemically reactive flows and mixtures. For such
flows, the time-centered implicit formulation may indeed offer a better numerical accuracy.
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I. INTRODUCTION

In the last decade the lattice Boltzmann �LB� method has
emerged as a competitive technique for the numerical simu-
lation of complex flows �1–5� and, to a much lesser extent,
even quantum systems �6�. Viewed as a pure hydrodynamic
solver, LB exhibits a number of remarkable properties,
which stem from the conceptual simplicity of the stream-
and-collide mathematical structure inherent to kinetic theory,
as opposed to the macroscopic representation of fluid mo-
tion. From the accuracy standpoint LB can be classified as a
second-order method with regard to the spatial discretization,
whose efficiency results from a low computational demand
�operation count per lattice site and grid point� as combined
with exact conservation for the streaming step and machine
round-off conservation for the collision stage. These conser-
vation laws are instrumental in keeping the prefactors of
higher-order errors much lower than in finite-difference
schemes, thus allowing LB to compete with higher-order
schemes, and even spectral methods. The time accuracy of
the LB method has made the object of some controversy in
the past �7–10�; indeed, being based on a forward-Euler
time-marching scheme, it would seem natural to conclude
that LB is only first order accurate in time, with the common
tenet being that second-order accuracy is achieved by ab-
sorbing second-order numerical diffusivity into the effective
fluid viscosity. Only recently it was realized that a simple
time-marching formulation of the LB method based on an
implicit Crank-Nicholson �CN� integration rule can achieve
second-order time accuracy as shown by �7�. This approach,
however, requires a nonlinear transformation of the LB dis-
crete distribution to an equivalent one, based on a recombi-
nation of equilibrium and nonequilibrium components. Since
this transformation is one to one, it was concluded that the
CN version of LB is indeed second order in time. In this
paper we wish to bring up the following observations. �i� The
standard and implicit CN versions of LB are formally and
computationally equivalent �provided a time shift �t /2 is

retained in the relaxation time of the explicit version�. �ii�
The LB can also be derived as a second-order explicit �Ver-
let� scheme for a continuum Boltzmann equation �BE� with a
memory delay term exactly equal to �t /2. �iii� All of these
schemes are second order in space and first order in time
with respect to hydrodynamic limit �diffusive scaling�. �iv�
All of these schemes are second order in space and time with
respect to the continuum kinetic limit �convective scaling�.
�v� The equivalence between these three independent formu-
lations only applies to the case of flows with mass and mo-
mentum conservations. For more general situations, e.g.,
flow mixtures with chemical reactions, the implicit CN for-
mulation may indeed offer an advantage over the standard
one.

II. STANDARD AND GENERALIZED BOLTZMANN
EQUATIONS WITH MEMORY

The BE rests on a clear-cut separation between free
streaming and collisions, which results in a very compact
first-order hyperbolic equation,

Df = ��feq − f� , �1�

where Dª�t+va�af is the free-streaming operator and the
collision operator is taken in the form of a single-time relax-
ation around a local Maxwellian equilibrium feq, with � be-
ing the inverse relaxation time, i.e., �=1 /�. Finally, Latin
indices run over spatial dimensions.

The gas-kinetic equation �11,12� �Bhatnagar-Gross-Krook
�BGK� model for the Boltzmann equation� provides a useful
mathematical model for fluid dynamics in the limit of weak
departure from local equilibrium �hydrodynamic regime�.
The fluid mass density and velocity are defined by the
zeroth- and first-order kinetic moments of the distribution,
that is, ��x� , t�=�f�x� ,v� , t�dv� and �u��x� , t�=�f�x� ,v� , t�v�dv� . The
large-scale limit �Chapman-Enskog expansion� of this equa-
tion shows that the moments of the above equation obey the
Navier-Stokes equations of continuum fluid mechanics, with
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a kinematic viscosity �=cs
2�, where cs is the sound speed and

this information is implicitly provided by the definition of
the local equilibrium �13�.

The lattice Boltzmann equation �LBE� is readily obtained
by integrating Eq. �1� along the characteristics v� =c�i, defined
by a suitable set of discrete speeds c�i �with i=0,b� �for the
present study we refer to the standard two-dimensional nine-
speed lattice�. The resulting equation reads as follows:

f i�x� + c�i�t,t + �t� = f i�x�,t� + ��t�f i
eq − f i� . �2�

In the large-scale limit, Eq. �2� can be shown to recover
the incompressible Navier-Stokes equations, with a viscosity
coefficient �=cs

2��− �t
2 �. The shift in the viscosity-relaxation

relation with respect to the BE is due to the time interval
separation between the free streaming and the particle colli-
sion �mathematically, it could be derived through an operator
splitting approach as pointed out by �14��. Since the discrete
speeds c�i are constants, the left-hand side �free flight� of Eq.
�2� is exact, a key property for the stability of the method,
especially for flows far from equilibrium. On the other hand,
the right-hand side �collision operator� results from a first-
order explicit evaluation of the collision operator. Based on
this latter observation, one is led to conclude that LB is only
first order in time.

One of the main observations of this paper is that the
LBE, while first order with respect to the BE, is nonetheless
a second-order accurate time marcher for the generalized
Boltzmann equation with memory term �BEM as Boltzmann
equation with memory� �10,15,16�,

�D2f + Df = ��feq − f� . �3�

The second-order derivative is a memory term, introducing a
delay of order � in the relaxation toward equilibrium. The
�singular� limit �→0 recovers the standard Boltzmann equa-
tion in relaxation form.

The memory term has been advocated by �15� as a fun-
damental extension of the Boltzmann equation, acknowledg-
ing the fact that the finite size of the molecules, i.e., finite
duration of collision events, introduces first-order effects in
the Knudsen number, which cannot be omitted even at the
level of the streaming operator. In other words, the con-
tinuum Boltzmann equation, as we know it in the form of a
first-order hyperbolic equation, should be valid only to first
order in the Knudsen number Kn�=�� f / f , with � being the
effective size of the molecule �interaction range�. This runs
against the widely held view, according to which the Boltz-
mann equation is valid at all orders in the Knudsen number.
It is worth to point out that, due to these finite-size effects,
the BEM equation satisfies a generalized continuity equation

of the form �t�̂+� · Ĵ=0, where �̂��+�D� /Dt and Ĵ�J
+�DJ /Dt. Unlike their pointlike counterparts, finite-size par-
ticles can be partly in and partly out of the control volume,
thus generating fluctuating terms in the continuity equation.
Indeed, some authors �17,18� have argued that, because of
these fluctuations, the momentum density �fluid momentum
per unit volume� and the mass flux rate �mass flow per unit
surface and unit time� can no longer be identified, as it is
commonly done in fluid dynamics. To the best of our knowl-

edge, this point remains controversial �19� and, since it lies
beyond the scope of the present work, we shall not deal with
it any further. Instead, we note that, with the identification
�=dt /2, the generalized continuity equation is �to second
order in �� still a continuity equation, only evaluated at time
t+dt /2. Therefore, at least from a computational standpoint,
the relation between LB and BEM appears to be well posed.
In the following we shall show that the LBE bears a direct
link to a generalized BE with memory. Prior to proving that
LBE is second order accurate with respect to BEM, let us
revisit the second-order LBE derived from implicit Crank-
Nicholson time marching of the BE.

III. CRANK-NICHOLSON DISCRETIZATION OF THE BE

In the original LB scheme the space-time discretization of
the difference equation �2� is performed through an explicit
finite differencing along the particle trajectories �straight
lines since the discrete speeds are constant� by taking advan-
tage of a highly simplified method of characteristics. Consid-
ering a second-order strategy for the time finite differencing,
the lattice Boltzmann equation with BGK approximation
reads as follows:

f i�x� + c�i�t,t + �t� = f i�x�,t� −
�t

2�
�f i�x�,t� − f i

eq�x�,t�

+ f i�x� + c�i�t,t + �t�

− f i
eq�x� + c�i�t,t + �t�� . �4�

Next, in order to provide a unified representation of the vari-
ous time-marching schemes, let us generalize Eq. �4� as fol-
lows:

f i�x� + c�i�t,t + �t� = f i�x�,t� −
�t

�
	�f i�x� + c�i�t,t + �t�

− f i
eq�x� + c�i�t,t + �t�� −

�t

�
�1 − 	�


�f i�x�,t� − f i
eq�x�,t�� , �5�

where 	 is a tunable numerical parameter such that 	=0 and
1/2 correspond to standard and Crank-Nicholson LBEs, re-
spectively.

This looks like a daunting implicit equation with simulta-
neous dependencies, which usually impose the resort to ex-
pensive matrix-solving procedures. Fortunately, a clever
transformation facilitates the procedure. By making the fol-
lowing transformation �7�:

f̃ i = f i +
�t

2�
�f i − f i

eq� , �6�

the implicit equation �4� is turned into an explicit evolution

equation again, for the transformed distribution f̃ ,
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f̃ i�x� + c�i�t,t + �t� = f̃ i�x�,t� −
�t

� +
1

2
�t

� f̃ i�x�,t� − f i
eq�x�,t�� .

�7�

One may then argue that the price for this implicit to explicit
transformation is that retracing the original f i from the trans-

formed f̃ i implies the solution of a local nonlinear problem,
since f i

eq shows a quadratic dependence on f i via the local
density and flow speed. However, this difficulty is bypassed,
by observing that the transformation

f i =

f̃ i +
��t

2
f i

eq

1 + ��t/2
�8�

implies the following relations for the equilibrium �eq� and
nonequilibrium �ne� components, respectively:

f̃ i
eq = f i

eq, �9�

f̃ i
ne = �1 +

��t

2
� f i

ne. �10�

This means that any linear combination of the distribution
functions �kinetic moment�, M�f�=Meq+Mne, obeys the fol-
lowing rules:

M̃eq = Meq, �11�

M̃ne = �1 +
��t

2
�Mne. �12�

The nice consequence is that the basic hydrodynamic quan-

tities are invariant under the transformation f → f̃ , i.e., they

are obtained through simple summation over f̃ i,

� = 	
i

f i = 	
i

f̃ i, �13�

u� = 	
i

c�i f i/� = 	
i

c�i f̃/� . �14�

This voids the need of solving the implicit equation �4� to
obtain density and hydrodynamic velocity fields. The differ-

ence between f and f̃ becomes apparent only at the level of
nonconserved quantities, such as the stress tensor and higher-
order kinetic moments. Indeed, the stress tensor Sab is related
to the nonequilibrium component of the momentum flux ten-
sor, defined through the following local expression:

Pab
ne = 	

i

�ciacib − cs
2�ab��f i − f i

eq� . �15�

where Latin indices run over the spatial dimensions. The
precise relation to the hydrodynamic strain tensor is as fol-
lows:

S̃ab = −
�

2�cs
2 P̃ab

ne = �1 +
��t

2
�Sab. �16�

As long as hydrodynamic moments are conserved, it is
therefore clear that a second-order Crank-Nicholson evalua-
tion of the collision operator leads basically to the same al-

gorithm as LB, only for a transformed distribution f̃ , with a
shifted-rescaled frequency,

�̃ =
�

1 +
��t

2

. �17�

Given that f̃ carries the same density and momentum as the
original f , whenever the numerical discretization error can be
entirely reabsorbed within a time shift of the macroscopic

viscosity, it is correctly concluded that the f̃ and f represen-
tations are hydrodynamically equivalent, which implicitly
shows that LB is second order in time with respect to the BE
with a modified relaxation frequency �̃.

This derivation is adamant, but nonetheless indirect. As
reported in �14�, the time step in the CN formulation is not
restricted by the stability condition �t�2�, so that a vanish-
ingly small �, as required to achieve very small viscosity or
high Reynolds numbers, does not necessarily translate to a
correspondingly small time step �t. The trade-off is quite
clear: with standard LBE, thanks to the propagation viscosity
�p=−cs

2�t /2, it is possible to achieve vanishing viscosities
�=O��� where �1, with a nonvanishing time step �t
=O���. In the CN formulation, on the other hand, vanishing
viscosities �=O��� necessarily imply �=O���, although this
does not necessarily translates into �t=O��� since the time
step is no longer restricted by stability constraint. Although
the two strategies appear to be quite distinct one from an-
other, here they will be shown to be formally and computa-
tionally equivalent for the simulation of macroscopic hydro-
dynamics. Before doing so, we proceed by illustrating a third
and independent way to prove second-order accuracy of
LBE, which has the merit of dispensing with any implicit
time-marching procedure, and hence no variable transforma-
tion.

IV. VERLET DISCRETIZATION OF THE BEM

In the following, we provide a more straightforward dem-
onstration of the second-order accuracy of the LBE. To this
end, we recast Eq. �3� in the form of a nonlinearly driven
damped oscillator,

D2f = − �Df + �2�feq − f� ,

where we have set �=1 /� and �2=� /�. Note that the stan-
dard first-order BE is the infinitely damped limit ��→� ,�
→� ,�2 /�→�� of this second-order kinetic equation. In full
analogy with molecular dynamics, we discretize the above
with the popular Verlet scheme �20� as follows:

f i�x� + c�i�t,t + �t� − 2f i�x�,t� + f i�x� − c�i�t,t − �t� + ��t/2


�f i�x� + c�i�t,t + �t� − f i�x� − c�i�t,t − �t��

= �2�t2�f i
eq�x�,t� − f i�x�,t�� . �18�

Collecting all terms at the three distinct time levels, we ob-
tain
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f�x� + c�i�t,t + �t� = Afi�x�,t� + Bfi�x� − c�i,t − �t� + Cfi
eq,

�19�

where

A =
2 − �2�t2

1 + ��t/2
, �20�

B = −
1 − ��t/2
1 + ��t/2

, �21�

C =
�2�t2

1 + ��t/2
. �22�

Next, we observe that the standard LBE scheme is a special
case of the above, with the choice A=1−��t, B=0, C
=��t,

f i�x� + c�i�t,t + �t� = �1 − ��t�f i�x�,t� + ��tf i
eq. �23�

Moreover, it is readily checked that this triple of values is
exactly recovered with the choice ��t=2, namely, �=�t /2.
The Verlet scheme with dissipative terms is second order
time accurate, thus proving that LBE is a second-order Verlet
time integration of the Boltzmann equation with memory.

V. RECOVERING BEM FROM
CRANK-NICHOLSON LBE

The circle is now closed by observing that with the choice
�=�t /2, the BEM, given by Eq. �3� turns exactly into the
second-order Taylor expansion of the standard LBE. A
second-order Taylor expansion of Eq. �7� delivers the follow-
ing equation:

Dif̃ i +
�t

2
Di

2 f̃ i = −
1

� +
1

2
�t

� f̃ i − f i
eq� , �24�

where Di=�t+c�i ·�� . Therefore, the Crank-Nicholson evalua-
tion of the collision operator in the discrete LBE is equiva-
lent to a generalized form of the Boltzmann equation, which
can be assimilated to the continuum LBE with the addition

of a second-order memory term �t
2 Di

2 f̃ i.

VI. FROM KINETIC THEORY TO FLUID DYNAMICS

As already pointed out, the moments of BE and BEM
both lead to a particular form of the Navier-Stokes equations.

Let us call f , f̃ , and g the population functions and � f, �̃, and
�g the corresponding relaxation parameters for the standard
LBE, the LBE formulation with the variable transformation,
and the LBE formulation derived through the Verlet discreti-
zation of the BEM, respectively.

This leads to the following three kinetic models:

f i�x� + c�i�t,t + �t� = f i�x�,t� +
�t

� f
�f i

eq − f i� , �25�

f̃ i�x� + c�i�t,t + �t� = f̃ i�x�,t� +
�t

�̃ + �t/2
� f̃ i

eq − f̃ i� , �26�

gi�x� + c�i�t,t + �t� = gi�x�,t� +
�t

�g + �t/2
�gi

eq − g� . �27�

Recovering the Navier-Stokes description of a fluid with vis-
cosity � through a Chapman-Enskog expansion, we obtain

� f =
�

cs
2 +

�t

2
, �28�

�̃ =
�

cs
2 , �29�

�g =
�

cs
2 . �30�

Therefore, the simulation of a fluid with viscosity � through
the three kinetic models requires solving the following equa-
tions:

f i�x� + c�i�t,t + �t� = f i�x�,t� +
�t

�/cs
2 + �t/2

�f i
eq − f i� , �31�

f̃ i�x� + c�i�t,t + �t� = f̃ i�x�,t� +
�t

�/cs
2 + �t/2

� f̃ i
eq − f̃ i� , �32�

gi�x� + c�i�t,t + �t� = gi�x�,t� +
�t

�/cs
2 + �t/2

�gi
eq − g� . �33�

This point, summarized in Fig. 1, clearly demonstrates that,
as long as the hydrodynamic moments are conserved, the
three schemes are equivalent in terms of macroscopic behav-
ior in the bulk.

We wish to emphasize that, despite its tight relation to the
time-marching procedure, the equivalence between the three
kinetic schemes does not imply any statement regarding their
accuracy with respect to the hydrodynamic equations. The
latter issue is still controversial, not least because of its high
sensitivity to the details of the procedures adopted to imple-
ment the boundary conditions. In the following section we
shall revisit this important issue.

VII. CONVERGENCE AND ACCURACY

From the numerical point of view, it is not convenient to
implement the LB algorithm in the form reported in Eq. �2�,
because the latter requires nonhomogeneous discretization
with regard to space and time. It is easy to overcome this
problem by rewriting the left-hand side of Eq. �2� as

f i�x� + c�i�t,t + �t� = f i�x�� + c�i�,t� + 1� , �34�

where x��=x� /�x, c�i�=c�i /c, c=�x /�t, and t�= t /�t. The non-
zero components of the discrete velocities of the nine-speed
lattice considered here all have the same magnitude. If one
takes the magnitude of the nonzero components equal to c,
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then the previous expression implies that �x�=�t�=1. The
latter assumption is standard in the LBE literature. Designing
a lattice such that �x�=�t�=1 allows one to move along the
characteristics on a regular mesh, but it does not provide any
constraint on �t and �x in physical units.

Let us define cs the lattice sound speed: on the nine-
velocity lattice, the following relation holds: cs

2=c2 /3. If �t

�, then �x
c�t
�, where � is the particle mean free
path. Let us define L as the characteristic macroscopic
length, so that k=�x /L1 becomes essentially the numeri-
cal Knudsen number, and further introduce U as the charac-
teristic macroscopic velocity. Consequently �t /T=km,
where m=U /c is proportional to the numerical Mach number
and T=L /U is a typical macroscopic time scale. Hence, the
parameter m can be expressed equivalently as

m =
�t/T
�x/L

. �35�

Now we can formulate properly the problem of the scal-
ing, which consists of setting the parameter m on a given
mesh, i.e., for a given k, namely, in assuming the function
m�k�. Let us restrict ourselves to the function m�k�
k�,
where � is an integer. Two strategies are widely used in
literature:

�i� �=0, i.e., m
1, the so-called advective �or hyperbolic
or acoustic� scaling and

�ii� �=1, i.e., m
k, the so-called diffusive �or parabolic�
scaling.

Let us consider first the ideal case, where �=cs
2�. In this

case, the physical meaning of the discussed scaling strategies
can be clarified by introducing the following relation:

m =
cs

2

c2

Re k

�
, �36�

where �=��t=�t /� and Re=UL /� is the Reynolds number
or, equivalently,

Ma = Re Kn, �37�

where Ma=U /cs and Kn=cs� /L are the Mach and Knudsen’s
numbers, respectively. The latter relation is equivalent to the
so-called von Karman relation. In the diffusive scaling,
�x2 /�t=L2 /T, m
k, and �=�t /�
1. Hence, taking into
account Eq. �36� Re is kept fixed. In the acoustic scaling,
�x /�t=L /T, m
1, and �=�t /�
k. In this case, Eq. �36�
implies again that Re is kept fixed. The conclusion is that, as
far as the ideal case with �=cs

2� is concerned, both the dif-
fusive and the acoustic scalings imply that the Reynolds
number is kept fixed.

Unfortunately, in the numerical scheme for 	�1 /2, the
viscosity picks up a O��t� correction, according to expres-
sion �38�,

� =
1

3

�x2

�t2 �� + �	 − 1/2��t� , �38�

and, equivalently,

� = 3�
�t2

�x2 + �1/2 − 	��t . �39�

The previous correction modifies the expression given by Eq.

�36� because a different factor �̃ must be considered there,

where �̃ is defined as

�̃��,	� =
�

1 − �1/2 − 	��
. �40�

Consequently also Eq. �37� must be modified, namely,

Ma = Re Kn �/�̃ . �41�

The scaling of the physical and dimensionless numbers upon
doubling the grid resolution is summarized in Table I, for
both diffusive and acoustic scalings. As it is evident from the
table, in this case, as long as 	�1 /2, the diffusive scaling
ensures that the Reynolds number is kept fixed, while the
acoustic scaling implies some small variation.

FIG. 1. Schematic of the conceptual links between the three equivalent LB formulations for a continuum fluid with viscosity �. The
diagram straddles across three logical layers: continuum hydrodynamics, continuum kinetic theory, and discrete-kinetic theory.
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Since the diffusive scaling keeps fixed the macroscopic
viscosity, it is appropriate for assessing the accuracy of the
model toward the macroscopic equations. On the other hand,
the advective scaling keeps constant the microscopic relax-
ation time and hence it is appropriate for the convergence
toward continuum kinetic equations. In the following, con-
vergence and accuracy properties are investigated within
both scaling regimes.

VIII. NUMERICAL VALIDATION

In this section we demonstrate the equivalence of the
three formulations through numerical simulation of both
laminar and nonlaminar flows.

A. Poiseuille flow

We begin by considering a linear case, a laminar flow
between two parallel plates, driven by a constant acceleration
a� , oriented along the x axis, and tuned in such a way as to
recover the desired Reynolds number Re �i.e., Poiseuille
flow�. Periodic boundary conditions are imposed at the inlet
and the outlet sections of the computational domain, while
no-slip boundary conditions are enforced at the wall through
bounce-back reflection of the discrete populations.

In order to impose the desired acceleration a� , let us intro-
duce a modified macroscopic velocity u���u� and an equilib-
rium distribution function f i

eq� such that

� = 	
i

f i = 	
i

f i
eq�, �42�

u� = 	
i

c�i f i/� � u�� = 	
i

c�i f i
eq�/� ª u� + �u� , �43�

where �u� =u��−u�ª�a� . Clearly, Eqs. �6�–�8� are still valid,
provided that f i

eq� is considered instead of f i
eq. The equilib-

rium f i
eq� can now be computed from f̃ i by using Eq. �6�,

which yields

u� = 	
i

c�i f̃ i/� +
�t

2
a� . �44�

Periodic boundary conditions do not raise any problem,
while wall boundary conditions require some care. It is
known that the bounce-back rule for f i is sufficient to recover
no-slip boundary condition half cell away from the given
boundary node. For a computational node close to the wall,
bounce back is equivalent to assume that

f ī = f i, �45�

where f ī is the distribution function corresponding to the
discrete velocity c� ī, and c� īª−c�i is an incoming discrete par-
ticle velocity with respect to the wall. In the case of Crank-
Nicholson LBE, the condition given by Eq. �45� must be

reformulated for the populations f̃ i, in general by means of
transformation �6�. This general case will be discussed in the
next numerical test since, for the Poiseuille flow, we can

safely take f̃ ī= f̃ i because the acceleration is orthogonal to the
wall surface unit vector.

The results of the numerical computations for different
Reynolds numbers ranging between 20 and 22 000 are re-
ported in Table II, which compares the numerical and the
analytical values of the viscosity. It is observed that, by tun-
ing the relaxation parameters as suggested in the previous
section, identical results �up to the machine precision� are
obtained, for a given Reynolds number. This provides a nu-
merical validation of the aforementioned conceptual and
computational equivalence between the LBE and the Crank-
Nicholson LBE schemes for the macroscopic quantities.

B. Flow across an array of thin plates

Strictly speaking, the aforementioned numerical equiva-
lence only applies to the bulk properties because, in the pres-
ence of solid boundaries, transforming condition �45�, by

TABLE I. The scaling of the physical quantities and dimensionless numbers upon doubling the grid
resolution, dx→�x /2. In the above L and T denote the typical macroscopic length and time scale of the
problem.

Physical scaling
Micro-LB scaling
Acoustic scaling

Macro-LB scaling
Diffusive scaling

T→T T→T T→T

L→L L→L L→L

cs→cs cs→cs cs→2cs

U→U U→U U→U

�=� /cs
2→� �→� �=� /cs

2+ �1 /2−	��t→� /4

�=cs
2�→� �=cs

2��− �1 /2−	��t�→�+O��t� �→�

Ma→Ma Ma→Ma Ma→Ma /2

Kn→Kn Kn→Kn Kn→Kn /2

Re→Re Re→Re+O��t� Re→Re

k��x /L→h /2 k��x /L→h /2

���t /�→� /2 ���t /�→�
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means of the mapping �6�, is in general a nontrivial task.

Indeed, by recalling Eqs. �8� and �45� in terms of f̃ i we
obtain

f̃ ī +
��t

2
f

ī

eq�
= f̃ i +

��t

2
f i

eq�. �46�

Upon defining Fi�a�� such that 	ic�iFi�a��=��a� is the only non-
zero moment, it follows that f i

eq�= f i
eq+Fi. By introducing the

latter expression in Eq. �46�, we obtain

f̃ ī = f̃ i +
��t

2
�Fi − Fī� +

��t

2
�f i

eq − f
ī

eq� . �47�

As compared to Eq. �46�, two �pairs of� additional terms
make their appearance. In particular, due to definition of the
equilibrium, the rightmost term leads to an implicit boundary
condition. In order to circumvent this difficulty, the follow-
ing simplification is proposed:

f̃ ī = f̃ i +
��t

2
�Fi − Fī� . �48�

which clearly amounts to neglect the deficit between the two
specular equilibria f i

eq and f
ī

eq
.

In order to inspect the effects of the previous simplifica-
tion, we next consider a nonlinear test case, consisting of a
laminar flow between two parallel plates, driven by a con-
stant acceleration a� . Due to inlet-outlet periodicity, this cor-
responds to an array of periodically spaced orthogonal
screens. The computational domain is reported in Fig. 2 and
it is periodically repeated along the x axis. The screen is
located at 4/15 of the total length and each screen occupies
exactly half of the gap between the plates. The computational
mesh is 150
30 and the screen is discretized by 15
1
computational nodes. In the following, two simulations are
compared by varying the Reynolds number Re defined as
follows:

Re =
vL

�
, �49�

where v is the average incoming velocity in the reduced
section �i.e., half of the total channel section�, L is the char-
acteristic length equal to the reduced section height �i.e., half
of the total channel section�, and � is the fluid kinematic
viscosity. In particular, in the following the simulation pa-
rameters �in lattice units� are selected: ax� �2
10−4 ,1

10−4�, �� �0.2,0.1� and the total number of time steps Nt
varies from 25 000 to 50 000. The previous choices lead to
Re� �37.9,60.3�, respectively. Periodic boundary conditions
apply at both inlet and outlet. Wall boundary conditions are
described by Eq. �48�.

The numerical results are reported in Table III, which
compares both total kinetic energy and Reynolds number for
the different numerical time discretization methods �standard
forward-Euler–LBE and Crank-Nicholson�. At variance with
the linear test, a �very� small effect of the simplification
given in Eq. �48� is appreciated. This effect is due to the
implemented boundary conditions, as witnessed by the sub-
stantial reduction observed by using Eq. �48� instead of Eq.
�47�.

C. Green-Taylor vortex

We next investigate the accuracy of the various LB ver-
sions for the Green-Taylor vortex. This test case is a two-

TABLE II. The error in the numerical viscosity � for the Poiseuille flow solved by standard forward Euler
�LBE� and by Crank-Nicholson �CN-LBE� at different Re’s. The number of mesh points along the direction
transversal to the flow is Ny =30. Periodic boundary conditions are set at inlet and outlet and bounce-back
boundary conditions at the wall. The viscosity � is expressed in lattice units.

Re

� Error �%� on �

Exact LBE CN-LBE LBE CN-LBE

20 0.333333 0.331359 0.331359 −0.592182 −0.592182

40 0.166666 0.166781 0.166781 0.069016 0.069016

141 0.047619 0.047749 0.047749 0.273200 0.273200

404 0.016666 0.016714 0.016714 0.289161 0.289161

1090 0.006172 0.006190 0.006190 0.291084 0.291084

2988 0.002252 0.002258 0.002258 0.291349 0.291349

8137 0.000827 0.000829 0.000829 0.291385 0.291385

22130 0.000304 0.000305 0.000305 0.291389 0.291389

FIG. 2. Isocontours of the velocity magnitude for a laminar flow
between parallel plates with orthogonal screens periodically inter-
spaced. The computational domain repeats periodically along the x
axis and the screen is located at 4/15 of the total length. The mesh
size is Nx=150Ny =30.
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dimensional unsteady flow induced by a decaying vortex,
which involves nonlinear flow with periodic boundary con-
ditions. Besides freeing the comparison from uncertainties
due to the implementation of the boundary conditions, this
test also provides an analytical solution to compare with. The
temporal evolutions of the velocity components u and v and
of the pressure p are given by

u�x,y,t� = − u0 cos�kx�sin�ky�e−2k2�t,

v�x,y,t� = u0 cos�ky�sin�kx�e−2k2�t,

p�x,y,t� = −
u0

2

4
�cos�2kx� + cos�2ky��e−4k2�t + p0, �50�

where k=2� /L stands for wave number of the vortex, u0 is
the amplitude, and L is the edge of the square domain. In the
present simulations, we have taken k=1, so that there are
four vortices in the computational domain L
L, and u0=1
and p0=0.

1. Macroscopic scaling: Comparison with analytical results

In the next simulations we inspect the accuracy of the LB
scheme as a numerical solver for the macroscopic fluid dy-
namics equations. To this purpose, we tune the microscopic
relaxation time � so as to recover the same viscosity � on
different grids �i.e., different numerical Knudsen numbers k�.
The asymptotic analysis of LB schemes shows that the dis-
crepancies between the moment and the fluid dynamic equa-
tions can be grouped within two different sets, O�mk� and
O�k2�, where m=U /c is the numerical Mach number and k
=�x /L1 is the numerical Knudsen number. See Ref. �21�
for additional details. Hence, the global error Eg of the nu-
merical solution can be represented as

Eg = �ctm + cxk�k , �51�

where ct and cx are two proper constants. Hence, in order to
achieve optimal accuracy, it is expedient to choose m
k. In
this section, we take m=10k, corresponding to the diffusive
scaling, i.e., �t=10T�x2 /L2 �see the previous section for de-
tails� and this yields

Eg
d = �10ct + cx�k2 
 O�k2� 
 O„��x/L�2

… 
 O��t/�10T�� .

�52�

Taking into account that �t=10T�x2 /L2 in Eq. �39� yields

� = 3�
�t

�x2 + �1/2 − 	���t , �53�

which means that the microscopic relaxation time � is mesh
dependent. In the following, we use �0=1
10−3, L=2�,
Re=6283, and total physical simulation time is Tt=10. The
numerical simulations were performed for a series of grid
resolutions, with Nx� �64,128,256,512� grid points along
each direction. This choice leads to 1.95
10−3�k�1.56

10−2 and consequently 1.95
10−2�m�1.56
10−1.

In Fig. 3 we show cuts of the velocity and pressure pro-
files, as computed with the LB scheme with 	=0,1 /2, and
compared with the analytical solution �50� �solid line�. No
appreciable difference between the two numerical solutions
with 	=0,1 /2 is seen, which further corroborates the state-
ment of equivalence between the three LB formulations �the
periodic boundary conditions play no role�.

To assess the order of convergence toward a macroscopic
limit, in Fig. 4 we report the error on the kinematic viscosity,
E�=�n−�0, where �n is the numerical value of the viscosity
calculated through the time decay of the kinetic energy �see
Eq. �50��. From this figure, a very neat second-order conver-
gence in the mesh spacing is clearly visible. Since these
simulations are performed in the diffusive scaling and m
=10k, this corresponds to first-order accuracy in the time
step, as already pointed out by Eq. �52�. Once again, we wish
to emphasize that all of these results show no appreciable
dependence on the value of 	.

2. Microscopic scaling

Next, we assess the convergence of the discrete-kinetic
scheme toward the continuum kinetic limit. The initial con-
ditions are computed assuming the equilibrium distribution
with the same fluid dynamic moments used in the previous

TABLE III. Viscosity �, kinetic energy E, and Reynolds number
Re for a laminar flow between parallel plates with orthogonal
screens periodically interspaced. Standard forward Euler �LBE� and
Crank-Nicholson �CN-LBE� are considered. The mesh size is Nx

=150Ny =30. Periodic boundary conditions are set at the inlet and
the outlet. Boundary conditions at the lateral walls and the screen
are given by Eq. �48�. Re is defined by taking the average velocity
in the reduced section at 4/15 of the total length �half of the total
channel section�

�

E Re

LBE CN-LBE LBE CN-LBE

0.066667 24.452503 24.452858 37.909884 37.909669

0.033333 17.308966 17.309025 60.286611 60.286565
FIG. 3. Cuts of the velocity and pressure profiles as computed

with the LB scheme with 	=0,1 /2, as compared with analytical
solution �solid line�. No appreciable difference between the two
numerical solutions with 	=0,1 /2 is visible at the scale of the plot.
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simulations. Since the equilibrium is a function of the Mach
number, in order to ensure the same initialization indepen-
dently of the mesh resolution, the numerical Mach number
was fixed at m=1 /5. This corresponds to the acoustic scal-
ing, i.e., �t=T /5��x /L� �see the previous section for details�
and this yields

Eg
a = �ct/5 + cxk�k 
 O�k� 
 O��x/L� 
 O�5�t/T� .

�54�

The previous relation shows that the microscopic scaling is
always first order in both space and time with regard to the
macroscopic fluid dynamic equations, i.e., for a fixed kine-
matic viscosity. However, it is important to note that, here,
the microscopic tuning is focused on the microscopic kinetic
equation. The accuracy with regard to the kinetic equation
will be discussed next.

Taking into account this condition in Eq. �38� yields

� =
1

3

�x2

�t2 �� + �	 − 1/2��t� , �55�

which means that for 	�1 /2 the viscosity � is mesh depen-
dent. In the following, we used �=0.012, L=2, and total
physical simulation time is Tt=0.16. The numerical simula-
tions were performed on a series of grid resolutions, with
Nx� �25,50,100,200,400� grid points in each direction.
This choice leads to 2.5
10−3�k�4.0
10−2 and conse-
quently 20.9�Re�60.0. It is worth to point out that the
previous choices permit us to do away with interpolations
both in space and time for comparing the results due to dif-
ferent meshes, i.e., sizes of the computational domain and
simulation time are both integer multiple of the discretization
step and time step, respectively. This is crucial for a consis-
tent comparison of the numerical results on different grids.

To asses the convergence of the LB model as a kinetic
scheme, in Fig. 5 we monitor the error on the discrete distri-
bution function Ef = �	x,y	i�f i�x ,y�− f i

��2�1/2, where the su-
perscript � refers to the Richardson’s extrapolated value. As
expected, the case 	=1 /2 shows a clear second-order con-
vergence with the mesh spacing, whereas for 	=0 the con-

vergence is linear. Besides the order of convergence, it is
worth noting that the case 	=1 /2 entails a dramatic drop of
the prefactor, as witnessed by the substantial reduction in the
error �about two orders of magnitude� even at relatively low
resolution �k=0.04�.

The above results refer to m=0.2, but we have checked
that a similar behavior is obtained up to m=0.5, a value at
which the simulation with 	=0 breaks down. This indicates
that the time-centered integration does indeed offer signifi-
cant numerical advantages, both in terms of accuracy and
stability, for the discrete-kinetic solver versus the continuum
kinetic equation.

IX. BROKEN EQUIVALENCE

The numerical results presented in the previous section
indicate that the equivalence among the different formula-
tions may be �weakly� broken in the presence of nontrivial
boundary conditions. This raises the more general issue of
broken equivalence between the three formulations for the
case of driven flows, in which hydrodynamic moments are
no longer conserved, as is in the presence of chemical reac-
tions or external forces �22�. Moreover, in the case of multi-
species flows, although the total momentum of the mixture is
conserved, the momentum of the single species is not so,
because of momentum transfer among the species.

The crucial point is that, once density and/or momentum
are no longer conserved, the collision term may “propagate”
the lack of conservation down the lower-order description of
the flow, at the Euler level. As a result, unless the numerical
discretization is sufficiently accurate, spurious numerical
terms may then appear at both Euler and Navier-Stokes lev-
els. Under such circumstances, the “trick” of reabsorbing
these spurious terms within “renormalized” effective trans-
port coefficients, such as the propagation viscosity previ-
ously discussed, is no longer viable. In order to clarify this
point, let us recall the generalized equilibrium f i

eq�, as given
by Eqs. �42� and �43�. Next, in order to provide a unified

FIG. 4. Error on the kinematic viscosity for the case of the
Taylor-Green vortex as a function of the grid resolution. No appre-
ciable difference between the two numerical solutions with 	
=0,1 /2 is visible at the scale of the plot.

FIG. 5. Error on the discrete distribution function for the case of
the Taylor-Green vortex, for 	=0 �open symbols� and 	=1 /2 �solid
squares� at various grid resolutions, Nx� �25,50,100,200,400�.
The numerical Mach number was fixed at m=1 /5, corresponding to
numerical Knudsen numbers in the following range: 2.5
10−3

�k�4.0
10−2.
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representation of the various time-marching schemes, let us
consider Eq. �5�.

We are interested in analyzing the macroscopic equations
recovered in the case of diffusive scaling. Let us define cs the
lattice sound speed and c=�x /�t the nonzero component of
the generic velocity on the nine-velocity lattice �on the latter,
the following relation holds: cs

2=c2 /3�. Both speeds are rep-
resentative of the microscopic dynamics on the lattice. If
�t
�, then �x
c�t
�, where � is the particle mean free
path. Let us define L as the characteristic macroscopic
length, so that k=�x /L1 becomes essentially the Knudsen
number, and further introduce U as the characteristic macro-
scopic velocity. Consequently �t /T=k�U /c�, where U /c is
proportional to the Mach number and T=L /U is a typical
macroscopic time scale. On the assumption that U /c
k, so
that �t /T
k2, we can write the left-hand side of Eq. �2� as

f i�x� + c�i�t,t + �t� = f i�x�� + kc�i�,t� + k2� , �56�

where x��=x� /L, c�i�=c�i /cs, and t�= t /T. It is worth to point out
the difference between the previous expression and the one
used in Eq. �34� for the numerical implementation of the
algorithm. Similar considerations hold for the equilibrium
distribution function. By applying the usual Taylor expan-
sion, followed by the Chapman-Enskog procedure using k as
a perturbation parameter, it can be shown �see the Appendix�
that the continuity equation picks up a diffusive contribution
proportional to cs

2�	−1 /2�, thereby proving that the local
mass conservation is recovered only the case 	=1 /2. Hence,
whenever 	�1 /2 and one of the hydrodynamic moments is
not conserved, the lack of conservation reflects into lower-
lying moments as well. The Crank-Nicholson integration rule
and the ensuing variable transformation circumvent this
problem.

A simple example of the broken equivalence is provided
by the decay of a sine-wave density profile �23� in multicom-
ponent fluid mixture. As is known, the mass diffusion coef-
ficient can be measured either by monitoring the decay rate
of the density perturbation or by inspecting the interspecies
mass flow �Fick’s law�. Any discrepancy in the two measure-
ments necessarily signals a violation of the continuity equa-
tion. As shown in �23�, such a violation can be tamed by
using the Crank-Nicolson method with the variable transfor-
mation �24�.

X. CONCLUSIONS

Summarizing, it is known that LBE, a first-order scheme
for the continuum Boltzmann equation with relaxation time
�, becomes second order for the same equation, with a
shifted relaxation �+�t /2. This shift permits us to achieve
vanishing low fluid viscosities �=cs

2��−�t /2�, without tak-
ing the relaxation parameter � and the time step �t to corre-
spondingly vanishingly small values, thereby avoiding the
time-step collapse and the ensuing dramatic drop in the com-
putational efficiency for the simulation of turbulent flows.
The implicit Crank-Nicholson formulation is a second-order
scheme for the continuum BE with relaxation �. Since the
corresponding fluid viscosity is unshifted, �=cs

2�, small vis-
cosities imply correspondingly small values of �. However,

this does not imply any time-step collapse because implicit
formulations are free from the stability constraint �t�2�.
While the two formulations were so far regarded as distinct
lattice kinetic schemes for the numerical simulation of hy-
drodynamic flows, in this work we have analytically shown
and numerically demonstrated that they are basically equiva-
lent in terms of macroscopic hydrodynamics simulation. In
addition, we have shown that the above versions are also
equivalent to a Verlet time marching for a generalized Bolt-
zmann equation with memory delay exactly equal to �t /2.
This proves second-order time accuracy toward the con-
tinuum limit, with no need of invoking implicit formulations.
This provides an elegant unified picture of the threefold path
to LBE from continuum kinetic equations. We have also em-
phasized that this equivalence does not imply second-order
time accuracy toward the hydrodynamic equations. The nu-
merical analysis of time accuracy is performed by simulating
a Taylor-Green vortex in a two-dimensional square box. The
result is that the implicit Crank-Nicholson formulation is
second order accurate in time to the continuous BE, but only
first order �and equivalent to LBE� to the incompressible
Navier-Stokes equations in the appropriate �diffusive� limit
�x2��t. Finally, we have pointed out that the aforemen-
tioned equivalence between the three representations breaks
down in the case where mass and/or momentum are no
longer conserved on a physical basis �external forcing and
chemical reactions in fluid mixtures�. In this case, the Crank-
Nicholson formulation is singled out as the only one securing
numerical conservation of the physically conserved quanti-
ties. However, as already pointed out in �24–26�, expensive
matrix-solving procedures can be avoided by means of the
nonlinear variable transformation discussed above.

APPENDIX: CHAPMAN-ENSKOG EXPANSION
WITHOUT MOMENTUM CONSERVATION

The Taylor expansion of Eq. �56� yields

f i�x�� + kc�i�,t� + k2� = 	
j=0

�
1

j!
�kc�i� · �� � + k2 �

�t�
� j

f i�x��,t�� .

�A1�

Next, let us expand the solution in powers of the smallness
parameter k=�x /L,

f i = f i
eq� + 	

m=1

�

kmfi
�m�. �A2�

Taking the zero-order hydrodynamic moments of the previ-
ous expansion and recalling that the result must be valid for
any k1 yields

	
i

f i
�m� = 0, ∀ m � 1. �A3�

In the case of the first-order hydrodynamic moment, the lack
of conservation appears, namely,
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i

c�i��f i − f i
eq��/� = − k�u��. �A4�

If �u��=�u� /U
1 �i.e., U scales �u� as well�, then substitut-
ing the regular expansion in the previous expression yields

	
i

c�i�f i
�1�/� = − �u��, �A5�

	
i

c�i�f i
�m�/� = 0, ∀ m � 2. �A6�

Introducing the regular expansion in Eq. �5� and grouping
together terms of the same order in k yields

c�i� · �� �f i
eq� = − �f i

�1�. �A7�

Taking the hydrodynamic moments of the previous expres-
sion yields

�� � · ��u���� = 0, �A8�

1

3�
�� �� = ��u�� = − ��u�� − u���� , �A9�

which represent the zero-order approximations of the conti-
nuity and momentum equations, respectively. Similarly, by
introducing the regular expansion in Eq. �5� and grouping the
terms of the same order in k2 yields

c�i� · �� �f i
�1� + �1

2
�c�i� · �� ��2 +

�

�t�
� f i

eq� = − �f i
�2� − �	c�i� · �� �f i

�1�.

�A10�

Combining Eqs. �A7� and �A10� yields

−
1

�
�c�i� · �� ��2f i

eq� + �1

2
�c�i� · �� ��2 +

�

�t�
� f i

eq�

= − �f i
�2� + 	�c�i� · �� ��2f i

eq�, �A11�

and, consequently,

� f i
eq�

�t�
= − �f i

�2� + � 1

�
−

1

2
+ 	��c�i� · �� ��2f i

eq�. �A12�

Taking the zero-order hydrodynamic moment, we obtain

��

�t�
=

1

3
� 1

�
−

1

2
+ 	��� �2� , �A13�

which represents the first-order approximation of the conti-
nuity equation. Collecting the terms up to k2 in the continuity
equation given by Eqs. �A8� and �A13� yields

��

�t�
+ �� � · ��u���� =

1

3
� 1

�
−

1

2
+ 	��� �2� . �A14�

Taking into account Eq. �A9� delivers

��

�t�
+ �� � · ��u��� =

1

3
�	 −

1

2
��� �2� , �A15�

which shows that, if 	�1 /2, then the continuity equation is
not satisfied, i.e., the zeroth-order hydrodynamic moment �
inherits nonconservation from the first-order hydrodynamic
moment u� . Further details can be found in �24�.
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